Canonical equiaffine hypersurfaces in R n + 1.
Let G be a graph with vertex set V(G) and edge set E(G). A signed matching is a function x: E(G) → -1,1 satisfying for every v ∈ V(G), where . The maximum of the values of , taken over all signed matchings x, is called the signed matching number and is denoted by β’₁(G). In this paper, we study the complexity of the maximum signed matching problem. We show that a maximum signed matching can be found in strongly polynomial-time. We present sharp upper and lower bounds on β’₁(G) for general graphs....
Domination parameters in random graphs G(n,p), where p is a fixed real number in (0,1), are investigated. We show that with probability tending to 1 as n → ∞, the total and independent domination numbers concentrate on the domination number of G(n,p).
Page 1