Currently displaying 1 – 13 of 13

Showing per page

Order by Relevance | Title | Year of publication

An application of Pólya’s enumeration theorem to partitions of subsets of positive integers

Xiao Jun WuChong-Yun Chao — 2005

Czechoslovak Mathematical Journal

Let S be a non-empty subset of positive integers. A partition of a positive integer n into S is a finite nondecreasing sequence of positive integers a 1 , a 2 , , a r in S with repetitions allowed such that i = 1 r a i = n . Here we apply Pólya’s enumeration theorem to find the number ( n ; S ) of partitions of n into S , and the number D P ( n ; S ) of distinct partitions of n into S . We also present recursive formulas for computing ( n ; S ) and D P ( n ; S ) .

On the toughness of cycle permutation graphs

Chong-Yun ChaoShaocen Han — 2001

Czechoslovak Mathematical Journal

Motivated by the conjectures in [11], we introduce the maximal chains of a cycle permutation graph, and we use the properties of maximal chains to establish the upper bounds for the toughness of cycle permutation graphs. Our results confirm two conjectures in [11].

Page 1

Download Results (CSV)