The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On the polynomial-like behaviour of certain algebraic functions

Charles FeffermannRaghavan Narasimhan — 1994

Annales de l'institut Fourier

Given integers D > 0 , n > 1 , 0 < r < n and a constant C > 0 , consider the space of r -tuples P = ( P 1 ... P r ) of real polynomials in n variables of degree D , whose coefficients are C in absolute value, and satisfying det P i x i ( 0 ) 1 i , j r = 1 . We study the family { f | V } of algebraic functions, where f is a polynomial, and V = { | x | δ , P ( x ) = 0 } , δ > 0 being a constant depending only on n , D , C . The main result is a quantitative extension theorem for these functions which is uniform in P . This is used to prove Bernstein-type inequalities which are again uniform with respect to P . The proof...

Page 1

Download Results (CSV)