Continous, piecewise-polynomial functions which solve Hilbert's 17th problem.
Let be a continuous, piecewise-polynomial function. The Pierce-Birkhoff conjecture (1956) is that any such is representable in the form , for some finite collection of polynomials . (A simple example is .) In 1984, L. Mahé and, independently, G. Efroymson, proved this for ; it remains open for . In this paper we prove an analogous result for “generalized polynomials” (also known as signomials), i.e., where the exponents are allowed to be arbitrary real numbers, and not just natural numbers;...
In this note it is presented a new rational and continuous solution for Hilbert's 17th problem, which asks if an everywhere positive polynomial can be expressed as a sum of squares of rational functions. This solution (Theorem 1) improves the results in [2] in the sense that our parametrized solution is continuous and depends in a rational way on the coefficients of the problem (what is not the case in the solution presented in [2]). Moreover our method simplifies the proof and it is easy to generalize...
Page 1