Let X be a real Banach space that does not contain a copy of l. Then X* contains asymptotically isometric copies of l if and only if X has a quotient which is asymptotically isometric to c.
We give a corrected proof of Theorem 2.10 in our paper “Commutators on ” [Studia Math. 206 (2011), 175-190] for the case 1 < q < p < ∞. The case when 1 = q < p < ∞ remains open. As a consequence, the Main Theorem and Corollary 2.17 in that paper are only valid for 1 < p,q < ∞.
Let T be a bounded linear operator on with 1 ≤ q < ∞ and 1 < p < ∞. Then T is a commutator if and only if for all non-zero λ ∈ ℂ, the operator T - λI is not X-strictly singular.
Download Results (CSV)