Generalized nonlinear mixed implicit quasi-variational inclusions with set-valued mappings.
In this paper, we establish a new version of Siegel's fixed point theorem in generating spaces of quasi-metric family. As consequences, we obtain general versions of the Downing-Kirk's fixed point and Caristi's fixed point theorem in the same spaces. Some applications of these results to fuzzy metric spaces and probabilistic metric spaces are presented.
Page 1