We prove that if there is a model of set-theory which contains no first countable, locally compact, scattered, countably paracompact space , whose Tychonoff square is a Dowker space, then there is an inner model which contains a measurable cardinal.
We show that a space is MCP (monotone countable paracompact) if and only if it has property , introduced by Teng, Xia and Lin. The relationship between MCP and stratifiability is highlighted by a similar characterization of stratifiability. Using this result, we prove that MCP is preserved by both countably biquotient closed and peripherally countably compact closed mappings, from which it follows that both strongly Fréchet spaces and q-space closed images of MCP spaces are MCP. Some results on...
We provide new proofs for the classical insertion theorems of Dowker and Michael. The proofs are geometric in nature and highlight the connection with the preservation of normality in products. Both proofs follow directly from the Katětov-Tong insertion theorem and we also discuss a proof of this.
We demonstrate that the set of topologically distinct inverse limit spaces of tent maps with a Cantor set for its postcritical ω-limit set has cardinality of the continuum. The set of folding points (i.e. points at which the space is not homeomorphic to the product of a zero-dimensional set and an arc) of each of these spaces is also a Cantor set.
We examine the structure of countable closed invariant sets under a dynamical system on a compact metric space. We are motivated by a desire to understand the possible structures of inhomogeneities in one-dimensional nonhyperbolic sets (inverse limits of finite graphs), particularly when those inhomogeneities form a countable set. Using tools from descriptive set theory we prove a surprising restriction on the topological structure of these invariant sets if the map satisfies a weak repelling or...
We give two examples of tent maps with uncountable (as it happens, post-critical) ω-limit sets, which have isolated points, with interesting structures. Such ω-limit sets must be of the form C ∪ R, where C is a Cantor set and R is a scattered set. Firstly, it is known that there is a restriction on the topological structure of countable ω-limit sets for finite-to-one maps satisfying at least some weak form of expansivity. We show that this restriction does not hold if the ω-limit set is uncountable....
For a continuous map f on a compact metric space (X,d), a set D ⊂ X is internally chain transitive if for every x,y ∈ D and every δ > 0 there is a sequence of points ⟨x = x₀,x₁,...,xₙ = y⟩ such that for 0 ≤ i< n. In this paper, we prove that for tent maps with periodic critical point, every closed, internally chain transitive set is necessarily an ω-limit set. Furthermore, we show that there are at least countably many tent maps with non-recurrent critical point for which there is a closed,...
We address various notions of shadowing and expansivity for continuous maps restricted to a proper subset of their domain. We prove new equivalences of shadowing and expansive properties, we demonstrate under what conditions certain expanding maps have shadowing, and generalize some known results in this area. We also investigate the impact of our theory on maps of the interval.
Download Results (CSV)