Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

An approximate nonlinear projection scheme for a combustion model

Christophe BerthonDidier Reignier — 2003

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE’s, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...

An approximate nonlinear projection scheme for a combustion model

Christophe BerthonDidier Reignier — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE's, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...

Second-order MUSCL schemes based on Dual Mesh Gradient Reconstruction (DMGR)

Christophe BerthonYves CoudièreVivien Desveaux — 2014

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We discuss new MUSCL reconstructions to approximate the solutions of hyperbolic systems of conservations laws on 2D unstructured meshes. To address such an issue, we write two MUSCL schemes on two overlapping meshes. A gradient reconstruction procedure is next defined by involving both approximations coming from each MUSCL scheme. This process increases the number of numerical unknowns, but it allows to reconstruct very accurate gradients. Moreover a particular attention is paid on the limitation...

Page 1

Download Results (CSV)