Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Universality of the μ-predictor

Christopher S. Hardin — 2013

Fundamenta Mathematicae

For suitable topological spaces X and Y, given a continuous function f:X → Y and a point x ∈ X, one can determine the value of f(x) from the values of f on a deleted neighborhood of x by taking the limit of f. If f is not required to be continuous, it is impossible to determine f(x) from this information (provided |Y| ≥ 2), but as the author and Alan Taylor showed in 2009, there is nevertheless a means of guessing f(x), called the μ-predictor, that will be correct except on a small set; specifically,...

Minimal predictors in hat problems

Christopher S. HardinAlan D. Taylor — 2010

Fundamenta Mathematicae

We consider a combinatorial problem related to guessing the values of a function at various points based on its values at certain other points, often presented by way of a hat-problem metaphor: there are a number of players who will have colored hats placed on their heads, and they wish to guess the colors of their own hats. A visibility relation specifies who can see which hats. This paper focuses on the existence of minimal predictors: strategies guaranteeing at least one player guesses correctly,...

Page 1

Download Results (CSV)