The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we extend the results of Orey and Taylor [S. Orey and S.J. Taylor, How often on a Brownian path does the law of the iterated logarithm fail? 28 (1974) 174–192] relative to random fractals generated by oscillations of Wiener processes to a multivariate framework. We consider a setup where Gaussian processes are indexed by classes of functions.
In this paper, we extend the results of Orey and Taylor [S. Orey and S.J. Taylor,
How often on a Brownian path does the law of the iterated logarithm fail?
(1974) 174–192]
relative to random fractals generated by oscillations of Wiener processes to a multivariate framework. We consider a setup where Gaussian processes are indexed by classes of functions.
Download Results (CSV)