The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Un algorithme pour la recherche de la réunion des arbres maximaux (RAM) d'un graphe préordonné était proposé dans un article précédent (Math. Inf. Sci. hum. n°114, 1991, 35-40). Cet algorithme, qui était incorrect, est complété, justifié et illustré par un exemple dans cette note.
On considère un graphe complet dont les arêtes sont totalement préordonnées. En analyse de similitude, plutôt que de procéder à un ordonnancement des arêtes ex oequo par une méthode lexicographique sur leurs intitulés, l'auteur propose de rechercher la réunion des arbres maximaux (RAM).
Download Results (CSV)