The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
After defining what is meant by a complex spray X on a complex manifold M, we introduce the notion of a spray complex curve associated to X. Several equivalent formulations are derived and we give necessary and sufficient conditions for M to admit spray complex curves for X through each point and in each direction. Refinements of this result are then derived for some special cases, for example when X is the horizontal radial vector field associated to a complex Finsler metric.
We derive conditions under which a holomorphic mapping of a taut Riemann surface must be an automorphism. This is an analogue involving invariant distances of a result of H. Cartan. Using similar methods we prove an existence result for 1-dimensional holomorphic retracts in a taut complex manifold.
Download Results (CSV)