On a minimax problem of Ricceri.
We consider the perturbed Neumann problem ⎧ -Δu + α(x)u = α(x)f(u) + λg(x,u) a.e. in Ω, ⎨ ⎩ ∂u/∂ν = 0 on ∂Ω, where Ω is an open bounded set in with boundary of class C², with , f: ℝ → ℝ is a continuous function and g: Ω × ℝ → ℝ, besides being a Carathéodory function, is such that, for some p > N, and for all t ∈ ℝ. In this setting, supposing only that the set of global minima of the function has M ≥ 2 bounded connected components, we prove that, for all λ ∈ ℝ small enough, the above...
We present two results on existence of infinitely many positive solutions to the Neumann problem ⎧ in Ω, ⎨ ⎩ ∂u/∂ν = 0 on ∂Ω, where is a bounded open set with sufficiently smooth boundary ∂Ω, ν is the outer unit normal vector to ∂Ω, p > 1, μ > 0, with and f: Ω × ℝ → ℝ is a Carathéodory function. Our results ensure the existence of a sequence of nonzero and nonnegative weak solutions to the above problem.
We establish an existence theorem for a Dirichlet problem with homogeneous boundary conditions by using a general variational principle of Ricceri.
Page 1