The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On the spectral Nevanlinna-Pick problem

Constantin Costara — 2005

Studia Mathematica

We give several characterizations of the symmetrized n-disc Gₙ which generalize to the case n ≥ 3 the characterizations of the symmetrized bidisc that were used in order to solve the two-point spectral Nevanlinna-Pick problem in ℳ ₂(ℂ). Using these characterizations of the symmetrized n-disc, which give necessary and sufficient conditions for an element to belong to Gₙ, we obtain necessary conditions of interpolation for the general spectral Nevanlinna-Pick problem. They also allow us to give a...

Nonlinear mappings preserving at least one eigenvalue

Constantin CostaraDušan Repovš — 2010

Studia Mathematica

We prove that if F is a Lipschitz map from the set of all complex n × n matrices into itself with F(0) = 0 such that given any x and y we know that F(x) - F(y) and x-y have at least one common eigenvalue, then either F ( x ) = u x u - 1 or F ( x ) = u x t u - 1 for all x, for some invertible n × n matrix u. We arrive at the same conclusion by supposing F to be of class ¹ on a domain in ℳₙ containing the null matrix, instead of Lipschitz. We also prove that if F is of class ¹ on a domain containing the null matrix satisfying F(0) = 0...

Page 1

Download Results (CSV)