Finite speed of propagation for a non-local porous medium equation
This note is concerned with proving the finite speed of propagation for some non-local porous medium equation by adapting arguments developed by Caffarelli and Vázquez (2010).
This note is concerned with proving the finite speed of propagation for some non-local porous medium equation by adapting arguments developed by Caffarelli and Vázquez (2010).
We consider a function which is a viscosity solution of a uniformly elliptic equation only at those points where the gradient is large. We prove that the Hölder estimates and the Harnack inequality, as in the theory of Krylov and Safonov, apply to these functions.
This paper is concerned with the study of a model case of first order Hamilton-Jacobi equations posed on a “junction”, that is to say the union of a finite number of half-lines with a unique common point. The main result is a comparison principle. We also prove existence and stability of solutions. The two challenging difficulties are the singular geometry of the domain and the discontinuity of the Hamiltonian. As far as discontinuous Hamiltonians are concerned, these results seem to be new. They...
This paper is concerned with the Hölder regularity of viscosity solutions of second-order, fully non-linear elliptic integro-differential equations. Our results rely on two key ingredients: first we assume that, at each point of the domain, either the equation is strictly elliptic in the classical fully non-linear sense, or (and this is the most original part of our work) the equation is strictly elliptic in a non-local non-linear sense we make precise. Next we impose some regularity and growth...
Page 1