The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study the regularity of the induced foliation of a Levi-flat hypersurface in C, showing that the foliation is as many times continuously differentiable as the hypersurface itself. The key step in the proof given here is the construction of a certain family of approximate plurisubharmonic defining functions for the hypersurface in question.
Download Results (CSV)