On the complemented subspaces of the Schreier spaces
It is shown that for every 1 ≤ ξ < ω, two subspaces of the Schreier space generated by subsequences and , respectively, of the natural Schauder basis of are isomorphic if and only if and are equivalent. Further, admits a continuum of mutually incomparable complemented subspaces spanned by subsequences of . It is also shown that there exists a complemented subspace spanned by a block basis of , which is not isomorphic to a subspace generated by a subsequence of , for every ....