Sur la représentation conforme des domaines plans
Cet article est un suite d'une étude "Sur les séries de fonctions orthogonales" parus au tome VII des cet journal. Soit ϕ_1(x),ϕ_2(x),ϕ_3(x),...,ϕ_n(x),... (1) un système norme de fonctions orthogonales, et soient a_1,a_2,a_3,...,a_n,... (2) des constantes réelles quelconques. L'auteur a démontrée dans la première parties de son ouvrage qu'il existe une série ∑_{n=1}^{∞}a_n · ϕ_n(x) (3) divergente partout, tandis que la série ∑_{n=1}^{∞}a_n^2 (4) converge. Le but principal de cette étude est de...
Le but de cette note est de démontrer: Théorème: Si les fonctions φ_n(x), (n=1,2,3,...) forment un système normé de fonctions orthogonales dans l'intervalle (a,b), c'est-à-dire si ∫_a^b [φ_n(x)]^2 dx =1, ∫_a^b φ_m(x)·φ_n(x)dx =0, n ≠ m, si, de plus, les constantes réelles a_n sont telles que ∑_{n=1}^{∞} a_n^2 (lg n)^2 converge, la série ∑_{n=1}^{∞} a_n·φ_n(x) converge presque partout dans l'intervalle (a,b). Théorème: Quelle que soit la fonction positive W(n) vérifiant la condition W(n) = o[(lg...
Page 1