The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Dubins' problem is intrinsically three-dimensional

D. Mittenhuber — 2010

ESAIM: Control, Optimisation and Calculus of Variations

In his 1957 paper [1] L. Dubins considered the problem of finding shortest differentiable arcs in the plane with curvature bounded by a constant and prescribed initial and terminal positions and tangents. One can generalize this problem to non-euclidean manifolds as well as to higher dimensions (cf. [15]). 
Considering that the boundary data - initial and terminal position and tangents - are genuinely three-dimensional, it seems natural to ask if the n-dimensional problem always reduces to the...

Page 1

Download Results (CSV)