Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Khinchin inequality and Banach-Saks type properties in rearrangement-invariant spaces

F. A. SukochevD. Zanin — 2009

Studia Mathematica

We study the class of all rearrangement-invariant ( = r.i.) function spaces E on [0,1] such that there exists 0 < q < 1 for which k = 1 n ξ k E C n q , where ξ k k 1 E is an arbitrary sequence of independent identically distributed symmetric random variables on [0,1] and C > 0 does not depend on n. We completely characterize all Lorentz spaces having this property and complement classical results of Rodin and Semenov for Orlicz spaces e x p ( L p ) , p ≥ 1. We further apply our results to the study of Banach-Saks index sets in...

On uniqueness of distribution of a random variable whose independent copies span a subspace in L p

S. AstashkinF. SukochevD. Zanin — 2015

Studia Mathematica

Let 1 ≤ p < 2 and let L p = L p [ 0 , 1 ] be the classical L p -space of all (classes of) p-integrable functions on [0,1]. It is known that a sequence of independent copies of a mean zero random variable f L p spans in L p a subspace isomorphic to some Orlicz sequence space l M . We give precise connections between M and f and establish conditions under which the distribution of a random variable f L p whose independent copies span l M in L p is essentially unique.

Orbits in symmetric spaces, II

N. J. KaltonF. A. SukochevD. Zanin — 2010

Studia Mathematica

Suppose E is fully symmetric Banach function space on (0,1) or (0,∞) or a fully symmetric Banach sequence space. We give necessary and sufficient conditions on f ∈ E so that its orbit Ω(f) is the closed convex hull of its extreme points. We also give an application to symmetrically normed ideals of compact operators on a Hilbert space.

Page 1

Download Results (CSV)