Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Substitution method for generalized linear differential equations

Dana Fraňková — 1991

Mathematica Bohemica

The generalized linear differential equation d x = d [ a ( t ) ] x + d f where A , f B V n l o c ( J ) and the matrices I - Δ - A ( t ) , I + Δ + A ( t ) are regular, can be transformed d y d s = B ( s ) y + g ( s ) using the notion of a logarithimc prolongation along an increasing function. This method enables to derive various results about generalized LDE from the well-known properties of ordinary LDE. As an example, the variational stability of the generalized LDE is investigated.

Regulated functions

Dana Fraňková — 1991

Mathematica Bohemica

The first section consists of auxiliary results about nondecreasing real functions. In the second section a new characterization of relatively compact sets of regulated functions in the sup-norm topology is brought, and the third section includes, among others, an analogue of Helly's Choice Theorem in the space of regulated functions.

Nonabsolutely convergent series

Dana Fraňková — 1991

Mathematica Bohemica

Assume that for any t from an interval [ a , b ] a real number u ( t ) is given. Summarizing all these numbers u ( t ) is no problem in case of an absolutely convergent series t [ a , b ] u ( t ) . The paper gives a rule how to summarize a series of this type which is not absolutely convergent, using a theory of generalized Perron (or Kurzweil) integral.

Regulated functions with values in Banach space

Dana Fraňková — 2019

Mathematica Bohemica

This paper deals with regulated functions having values in a Banach space. In particular, families of equiregulated functions are considered and criteria for relative compactness in the space of regulated functions are given.

Page 1

Download Results (CSV)