The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Standardness of sequences of σ-fields given by certain endomorphisms

Jacob FeldmanDaniel Rudolph — 1998

Fundamenta Mathematicae

 Let E be an ergodic endomorphism of the Lebesgue probability space X, ℱ, μ. It gives rise to a decreasing sequence of σ-fields , E - 1 , E - 2 , . . . A central example is the one-sided shift σ on X = 0 , 1 with 1 2 , 1 2 product measure. Now let T be an ergodic automorphism of zero entropy on (Y, ν). The [I|T] endomorphismis defined on (X× Y, μ× ν) by ( x , y ) ( σ ( x ) , T x ( 1 ) ( y ) ) . Here ℱ is the σ-field of μ× ν-measurable sets. Each field is a two-point extension of the one beneath it. Vershik has defined as “standard” any decreasing sequence of σ-fields isomorphic...

If the [T,Id] automorphism is Bernoulli then the [T,Id] endomorphism is standard

Christopher HoffmanDaniel Rudolph — 2003

Studia Mathematica

For any 1-1 measure preserving map T of a probability space we can form the [T,Id] and [ T , T - 1 ] automorphisms as well as the corresponding endomorphisms and decreasing sequence of σ-algebras. In this paper we show that if T has zero entropy and the [T,Id] automorphism is isomorphic to a Bernoulli shift then the decreasing sequence of σ-algebras generated by the [T,Id] endomorphism is standard. We also show that if T has zero entropy and the [T²,Id] automorphism is isomorphic to a Bernoulli shift then the...

The Morse minimal system is finitarily Kakutani equivalent to the binary odometer

Mrinal Kanti RoychowdhuryDaniel J. Rudolph — 2008

Fundamenta Mathematicae

Two invertible dynamical systems (X,,μ,T) and (Y,,ν,S), where X and Y are Polish spaces and Borel probability spaces and T, S are measure preserving homeomorphisms of X and Y, are said to be finitarily orbit equivalent if there exists an invertible measure preserving mapping ϕ from a subset X₀ of X of measure one onto a subset Y₀ of Y of full measure such that (1) ϕ | X is continuous in the relative topology on X₀ and ϕ - 1 | Y is continuous in the relative topology on Y₀, (2) ϕ ( O r b T ( x ) ) = O r b S ( ϕ ( x ) ) for μ-a.e. x ∈ X. (X,,μ,T) and...

Page 1

Download Results (CSV)