Approximation and symbolic calculus for Toeplitz algebras on the Bergman space.
In 1966 de Branges and Rovnyak introduced a concept of complementation associated to a contraction between Hilbert spaces that generalizes the classical concept of orthogonal complement. When applied to Toeplitz operators on the Hardy space of the disc, H, this notion turned out to be the starting point of a beautiful subject, with many applications to function theory. The work has been in constant progress for the last few years. We study here the multipliers of some de Branges-Rovnyak spaces contained...
Let f be a function in the Douglas algebra A and let I be a finitely generated ideal in A. We give an estimate for the distance from f to I that allows us to generalize a result obtained by Bourgain for to arbitrary Douglas algebras.
In a Discounted Markov Decision Process (DMDP) with finite action sets the Value Iteration Algorithm, under suitable conditions, leads to an optimal policy in a finite number of steps. Determining an upper bound on the necessary number of steps till gaining convergence is an issue of great theoretical and practical interest as it would provide a computationally feasible stopping rule for value iteration as an algorithm for finding an optimal policy. In this paper we find such a bound depending only...
Page 1