Connexité locale
We study the Lusternik-Schnirelmann category of some CW-complexes with 3 cells, built on Y = S U e. In particular, we prove that an R-local space, in the sense of D. Anick, of LS-category 3 and of the homotopy type of a CW-complex with 3 R-cells, has a cup-product of length 3 in its algebra of cohomology. This result is no longer true in the framework of mild spaces.
Let S be the category of r-reduced simplicial sets, r ≥ 3; let L be the category of (r-1)-reduced differential graded Lie algebras over Z. According to the fundamental work [3] of W.G. Dwyer both categories are endowed with closed model category structures such that the associated tame homotopy category of S is equivalent to the associated homotopy category of L. Here we embark on a study of this equivalence and its implications. In particular, we show how to compute homology, cohomology, homotopy...
Les approches de Whitehead et de Ganea, conceptuellement différentes, permettent toutes deux la définition de la catégorie de Lusternik et Schnirelmann. Le premier auteur a montré qu’elles existent dans le cadre des catégories à modèles de Quillen et qu’elles coïncident lorsqu’est vérifié un axiome supplémentaire non autodual, l’axiome du cube. Nous étendons ici cette étude au cadre de catégories à modèles non nécessairement propres et ne vérifiant pas l’axiome du cube. Pour cela, l’hypothèse globale...
Page 1