The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For positive integers Δ and D we define nΔ,D to be the largest number of vertices in an outerplanar graph of given maximum degree Δ and diameter D. We prove that [...] nΔ,D=ΔD2+O (ΔD2−1) is even, and [...] nΔ,D=3ΔD−12+O (ΔD−12−1) if D is odd. We then extend our result to maximal outerplanar graphs by showing that the maximum number of vertices in a maximal outerplanar graph of maximum degree Δ and diameter D asymptotically equals nΔ,D.
Download Results (CSV)