The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The packing chromatic number χρ(G) of a graph G is the smallest integer k such that its set of vertices V(G) can be partitioned into k disjoint subsets V1, . . . , Vk, in such a way that every two distinct vertices in Vi are at distance greater than i in G for every i, 1 ≤ i ≤ k. For a given integer p ≥ 1, the p-corona of a graph G is the graph obtained from G by adding p degree-one neighbors to every vertex of G. In this paper, we determine the packing chromatic number of p-coronae of paths and...
Download Results (CSV)