The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On convergence sets of divergent power series

Buma L. FridmanDaowei MaTejinder S. Neelon — 2012

Annales Polonici Mathematici

A nonlinear generalization of convergence sets of formal power series, in the sense of Abhyankar-Moh [J. Reine Angew. Math. 241 (1970)], is introduced. Given a family y = φ s ( t , x ) = s b ( x ) t + b ( x ) t ² + of analytic curves in ℂ × ℂⁿ passing through the origin, C o n v φ ( f ) of a formal power series f(y,t,x) ∈ ℂ[[y,t,x]] is defined to be the set of all s ∈ ℂ for which the power series f ( φ s ( t , x ) , t , x ) converges as a series in (t,x). We prove that for a subset E ⊂ ℂ there exists a divergent formal power series f(y,t,x) ∈ ℂ[[y,t,x]] such that E = C o n v φ ( f ) if and only if...

Page 1

Download Results (CSV)