On iterates of holomorphic maps.
A nonlinear generalization of convergence sets of formal power series, in the sense of Abhyankar-Moh [J. Reine Angew. Math. 241 (1970)], is introduced. Given a family of analytic curves in ℂ × ℂⁿ passing through the origin, of a formal power series f(y,t,x) ∈ ℂ[[y,t,x]] is defined to be the set of all s ∈ ℂ for which the power series converges as a series in (t,x). We prove that for a subset E ⊂ ℂ there exists a divergent formal power series f(y,t,x) ∈ ℂ[[y,t,x]] such that if and only if...
Page 1