The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider a model for the control of a linear network flow system with unknown but bounded demand
and polytopic bounds on controlled flows. We are interested in the problem of finding a suitable objective function
that makes robust optimal the policy represented by the so-called linear saturated feedback control.
We regard the problem as a suitable differential game with switching cost and study it in the framework of the viscosity solutions theory for Bellman and Isaacs equations.
We consider a model for the control of a linear network flow system with unknown but bounded demand
and polytopic bounds on controlled flows. We are interested in the problem of finding a suitable objective function
that makes robust optimal the policy represented by the so-called linear saturated feedback control.
We regard the problem as a suitable differential game with switching cost and study it in the framework of the viscosity solutions theory for Bellman and Isaacs equations.
Download Results (CSV)