The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

A fixed point conjecture for Borsuk continuous set-valued mappings

Dariusz Miklaszewski — 2002

Fundamenta Mathematicae

The main result of this paper is that for n = 3,4,5 and k = n-2, every Borsuk continuous set-valued map of the closed ball in the n-dimensional Euclidean space with values which are one-point sets or sets homeomorphic to the k-sphere has a fixed point. Our approach fails for (k,n) = (1,4). A relevant counterexample (for the homological method, not for the fixed point conjecture) is indicated.

Page 1

Download Results (CSV)