Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Making sense of capitulation: reciprocal primes

David Folk — 2016

Acta Arithmetica

Let ℓ be a rational prime, K be a number field that contains a primitive ℓth root of unity, L an abelian extension of K whose degree over K, [L:K], is divisible by ℓ, a prime ideal of K whose ideal class has order ℓ in the ideal class group of K, and a any generator of the principal ideal . We will call a prime ideal of K ’reciprocal to ’ if its Frobenius element generates G a l ( K ( a ) / K ) for every choice of a . We then show that becomes principal in L if and only if every reciprocal prime is not a norm inside...

Page 1

Download Results (CSV)