The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Quantitative stability for sumsets in n

Alessio FigalliDavid Jerison — 2015

Journal of the European Mathematical Society

Given a measurable set A n of positive measure, it is not difficult to show that | A + A | = | 2 A | if and only if A is equal to its convex hull minus a set of measure zero. We investigate the stability of this statement: If ( | A + A | - | 2 A | ) / | A | is small, is A close to its convex hull? Our main result is an explicit control, in arbitrary dimension, on the measure of the difference between A and its convex hull in terms of ( | A + A | - | 2 A | ) / | A | .

Page 1

Download Results (CSV)