On the preservation of combinatorial types for maps on trees
We study the preservation of the periodic orbits of an -monotone tree map in the class of all tree maps having a cycle with the same pattern as . We prove that there is a period-preserving injective map from the set of (almost all) periodic orbits of into the set of periodic orbits of each map in the class. Moreover, the relative positions of the corresponding orbits in the trees and (which need not be homeomorphic) are essentially preserved.