On the regularity of solutions in Convex Integration theory.
Geometrical techniques are employed to prove a global existence theorem for -solutions to underdetermined systems of non-linear order partial differential equations, , which satisfy certain convexity conditions. The solutions are not unique, but satisfy given approximations on lower order derivatives. The main result, which includes the relative case generalizes the work of M. Gromov on non-linear first order systems.
Page 1