The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let 1 ≤ p < ∞, k ≥ 1, and let Ω ⊂ ℝⁿ be an arbitrary open set. We prove a converse of the Calderón-Zygmund theorem that a function possesses an derivative of order k at almost every point x ∈ Ω and obtain a characterization of the space . Our method is based on distributional arguments and a pointwise inequality due to Bojarski and Hajłasz.
We prove that a function belonging to a fractional Sobolev space may be approximated in capacity and norm by smooth functions belonging to , 0 < m + λ < α. Our results generalize and extend those of [12], [4], [14], and [11].
We construct a set B and homeomorphism f where f and have property N such that the symmetric difference between the sets of density points and of f-density points of B is uncountable.
For functions whose derivatives belong to an Orlicz space, we develop their "fine" properties as a generalization of the treatment found in [MZ] for Sobolev functions. Of particular importance is Theorem 8.8, which is used in the development in [MSZ] of the coarea formula for such functions.
Download Results (CSV)