The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Moser's Inequality for a class of integral operators

Finbarr HollandDavid Walsh — 1995

Studia Mathematica

Let 1 < p < ∞, q = p/(p-1) and for f L p ( 0 , ) define F ( x ) = ( 1 / x ) ʃ 0 x f ( t ) d t , x > 0. Moser’s Inequality states that there is a constant C p such that s u p a 1 s u p f B p ʃ 0 e x p [ a x q | F ( x ) | q - x ] d x = C p where B p is the unit ball of L p . Moreover, the value a = 1 is sharp. We observe that F = K 1 f where the integral operator K 1 has a simple kernel K. We consider the question of for what kernels K(t,x), 0 ≤ t, x < ∞, this result can be extended, and proceed to discuss this when K is non-negative and homogeneous of degree -1. A sufficient condition on K is found for the analogue...

Page 1

Download Results (CSV)