On canonical subfield preserving polynomials
Explicit monoid structure is provided for the class of canonical subfield preserving polynomials over finite fields. Some classical results and asymptotic estimates will follow as corollaries.
Explicit monoid structure is provided for the class of canonical subfield preserving polynomials over finite fields. Some classical results and asymptotic estimates will follow as corollaries.
An elementary approach is shown which derives the values of the Gauss sums over , p odd, of a cubic character. New links between Gauss sums over different field extensions are shown in terms of factorizations of the Gauss sums themselves, which are then revisited in terms of prime ideal decompositions. Interestingly, one of these results gives a representation of primes p of the form 6k+1 by a binary quadratic form in integers of a subfield of the cyclotomic field of the pth roots of unity.
By an elementary approach, we derive the value of the Gauss sum of a cubic character over a finite field without using Davenport-Hasse’s theorem (namely, if s is odd the Gauss sum is -1, and if s is even its value is ).
The paper presents a careful analysis of the Cantor-Zassenhaus polynomial factorization algorithm, thus obtaining tight bounds on the performances, and proposing useful improvements. In particular, a new simplified version of this algorithm is described, which entails a lower computational cost. The key point is to use linear test polynomials, which not only reduce the computational burden, but can also provide good estimates and deterministic bounds of the number of operations needed for factoring....
Page 1