On a characterization of -trees
A graph is a -tree if either is the complete graph on vertices, or has a vertex whose neighborhood is a clique of order and the graph obtained by removing from is also a -tree. Clearly, a -tree has at least vertices, and is a 1-tree (usual tree) if and only if it is a -connected graph and has no -minor. In this paper, motivated by some properties of 2-trees, we obtain a characterization of -trees as follows: if is a graph with at least vertices, then is a -tree if...