The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On a characterization of k -trees

De-Yan ZengJian Hua Yin — 2015

Czechoslovak Mathematical Journal

A graph G is a k -tree if either G is the complete graph on k + 1 vertices, or G has a vertex v whose neighborhood is a clique of order k and the graph obtained by removing v from G is also a k -tree. Clearly, a k -tree has at least k + 1 vertices, and G is a 1-tree (usual tree) if and only if it is a 1 -connected graph and has no K 3 -minor. In this paper, motivated by some properties of 2-trees, we obtain a characterization of k -trees as follows: if G is a graph with at least k + 1 vertices, then G is a k -tree if...

Page 1

Download Results (CSV)