If every member of a class P of Banach spaces has a projectional resolution of the identity such that certain subspaces arising out of this resolution are also in the class P, then it is proved that every Banach space in P has a strong M-basis. Consequently, every weakly countably determined space, the dual of every Asplund space, every Banach space with an M-basis such that the dual unit ball is weak* angelic and every C(K) space for a Valdivia compact set K , has a strong M-basis.
For p ≥ 1, a subset K of a Banach space X is said to be relatively p-compact if , where p’ = p/(p-1) and . An operator T ∈ B(X,Y) is said to be p-compact if T(Ball(X)) is relatively p-compact in Y. Similarly, weak p-compactness may be defined by considering . It is proved that T is (weakly) p-compact if and only if T* factors through a subspace of in a particular manner. The normed operator ideals of p-compact operators and of weakly p-compact operators, arising from these factorizations,...
Download Results (CSV)