A convolution property of some measures with self-similar fractal support
We define a class of measures having the following properties: (1) the measures are supported on self-similar fractal subsets of the unit cube , with 0 and 1 identified as necessary; (2) the measures are singular with respect to normalized Lebesgue measure m on ; (3) the measures have the convolution property that for some ε = ε(p) > 0 and all p ∈ (1,∞). We will show that if (1/p,1/q) lies in the triangle with vertices (0,0), (1,1) and (1/2,1/3), then for any measure μ in our class.