Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

A convolution property of some measures with self-similar fractal support

Denise Szecsei — 2007

Colloquium Mathematicae

We define a class of measures having the following properties: (1) the measures are supported on self-similar fractal subsets of the unit cube I M = [ 0 , 1 ) M , with 0 and 1 identified as necessary; (2) the measures are singular with respect to normalized Lebesgue measure m on I M ; (3) the measures have the convolution property that μ L p L p + ε for some ε = ε(p) > 0 and all p ∈ (1,∞). We will show that if (1/p,1/q) lies in the triangle with vertices (0,0), (1,1) and (1/2,1/3), then μ L p L q for any measure μ in our class.

Page 1

Download Results (CSV)