A nearly uniformly convex space which is not a -space
Several results are established about Banach spaces Ӿ which can be renormed to have the uniform Kadec-Klee property. It is proved that all such spaces have the complete continuity property. We show that the renorming property can be lifted from Ӿ to the Lebesgue-Bochner space if and only if Ӿ is super-reflexive. A basis characterization of the renorming property for dual Banach spaces is given.
We consider several greedy conditions for bases in Banach spaces that arise naturally in the study of the Thresholding Greedy Algorithm (TGA). In particular, we continue the study of almost greedy bases begun in [3]. We show that almost greedy bases are essentially optimal for n-term approximation when the TGA is modified to include a Chebyshev approximation. We prove that if a Banach space X has a basis and contains a complemented subspace with a symmetric basis and finite cotype then X has an...
We study minimality properties of partly modified mixed Tsirelson spaces. A Banach space with a normalized basis is said to be subsequentially minimal if for every normalized block basis of , there is a further block basis of such that is equivalent to a subsequence of . Sufficient conditions are given for a partly modified mixed Tsirelson space to be subsequentially minimal, and connections with Bourgain’s ℓ¹-index are established. It is also shown that a large class of mixed Tsirelson...
Page 1