The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We extend the notion of ascent and descent for an operator acting on a vector space to sets of operators. If the ascent and descent of a set are both finite then they must be equal and give rise to a canonical decomposition of the space. Algebras of operators, unions of sets and closures of sets are treated. As an application we construct a Browder joint spectrum for commuting tuples of bounded operators which is compact-valued and has the projection property.
Download Results (CSV)