The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present a constructive and self-contained approach to data driven infinite partition-of-unity copulas that were recently introduced in the literature. In particular, we consider negative binomial and Poisson copulas and present a solution to the problem of fitting such copulas to highly asymmetric data in arbitrary dimensions.
In this paper we consider the problem of estimating the intensity of a spatial homogeneous Poisson process if a part of the observations (quadrat counts) is censored. The actual problem has occurred during a court case when one of the authors was a referee for the defense.
We construct new multivariate copulas on the basis of a generalized infinite partition-of-unity approach. This approach allows, in contrast to finite partition-of-unity copulas, for tail-dependence as well as for asymmetry. A possibility of fitting such copulas to real data from quantitative risk management is also pointed out.
Download Results (CSV)