The problem of representability of quadratic functionals by sesquilinear forms is studied in this article in the setting of a module over an algebra that belongs to a certain class of complex Banach *-algebras with an approximate identity. That class includes C*-algebras as well as H*-algebras and their trace classes. Each quadratic functional acting on such a module can be represented by a unique sesquilinear form. That form generally takes values in a larger algebra than the given quadratic functional...
We study the representation of orthogonally additive mappings acting on Hilbert C*-modules and Hilbert H*-modules. One of our main results shows that every continuous orthogonally additive mapping f from a Hilbert module W over 𝓚(𝓗) or 𝓗𝓢(𝓗) to a complex normed space is of the form f(x) = T(x) + Φ(⟨x,x⟩) for all x ∈ W, where T is a continuous additive mapping, and Φ is a continuous linear mapping.
Being expected as a Banach space substitute of the orthogonal projections on Hilbert spaces, generalized n-circular projections also extend the notion of generalized bicontractive projections on JB*-triples. In this paper, we study some geometric properties of JB*-triples related to them. In particular, we provide some structure theorems of generalized n-circular projections on an often mentioned special case of JB*-triples, i.e., Hilbert C*-modules over abelian C*-algebras C0(Ω).
Download Results (CSV)