Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Product sets cannot contain long arithmetic progressions

Dmitrii Zhelezov — 2014

Acta Arithmetica

Let B be a set of complex numbers of size n. We prove that the length of the longest arithmetic progression contained in the product set B.B = bb’ | b,b’ ∈ B cannot be greater than O((nlog²n)/(loglogn)) and present an example of a product set containing an arithmetic progression of length Ω(nlogn). For sets of complex numbers we obtain the upper bound O ( n 3 / 2 ) .

Page 1

Download Results (CSV)