The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We provide an effective uniform upper bound for the number of zeros of the first non-vanishing Melnikov function of a polynomial perturbations of a planar polynomial Hamiltonian vector field. The bound depends on degrees of the field and of the perturbation, and on the order of the Melnikov function. The generic case was considered by Binyamini, Novikov and Yakovenko [BNY10]. The bound follows from an effective construction of the Gauss-Manin connection for iterated integrals.
We study pseudo-abelian integrals associated with polynomial deformations of slow-fast Darboux integrable systems. Under some assumptions we prove local boundedness of the number of their zeros.
Download Results (CSV)