On a graph invariant related to the sum of all distances in a graph.
Let G be a simple 4-regular plane graph and let S be a decomposition of G into edge-disjoint cycles. Suppose that every two adjacent edges on a face belong to different cycles of S. Such a graph G arises as a superposition of simple closed curves in the plane with tangencies disallowed. Studies of coloring of graphs of this kind were originated by Grötzsch. Two 4-chromatic graphs generated by circles in the plane were constructed by Koester in 1984 [10,11,12]. Until now, no other examples of such...
The Wiener index, W, is the sum of distances between all pairs of vertices in a graph G. The quadratic line graph is defined as L(L(G)), where L(G) is the line graph of G. A generalized star S is a tree consisting of Δ ≥ 3 paths with the unique common endvertex. A relation between the Wiener index of S and of its quadratic graph is presented. It is shown that generalized stars having the property W(S) = W(L(L(S)) exist only for 4 ≤ Δ ≤ 6. Infinite families of generalized stars with this property...
A k-gon α of a polyhedral graph G(V,E,F) is of type ⟨b₁,b₂,...,bₖ⟩ if the vertices incident with α in cyclic order have degrees b₁,b₂,...,bₖ and ⟨b₁,b₂,...,bₖ⟩ is the lexicographic minimum of all such sequences available for α. A polyhedral graph G is oblique if it has no two faces of the same type. Among others it is shown that an oblique graph contains vertices of degree 3.
In 1960, Dirac put forward the conjecture that r-connected 4-critical graphs exist for every r ≥ 3. In 1989, Erdös conjectured that for every r ≥ 3 there exist r-regular 4-critical graphs. A method for finding r-regular 4-critical graphs and the numbers of such graphs for r ≤ 10 have been reported in [6,7]. Results of a computer search for graphs of degree r = 12,14,16 are presented. All the graphs found are both r-regular and r-connected.
Page 1