The search session has expired. Please query the service again.
Let ℳ be a semi-finite factor and let 𝓙(ℳ ) be the set of operators T in ℳ such that T = ETE for some finite projection E. We obtain a representation theorem for unitarily invariant norms on 𝓙(ℳ ) in terms of Ky Fan norms. As an application, we prove that the class of unitarily invariant norms on 𝓙(ℳ ) coincides with the class of symmetric gauge norms on a classical abelian algebra, which generalizes von Neumann's classical 1940 result on unitarily invariant norms on Mₙ(ℂ). As another application,...
If T is a bounded operator on a separable complex Hilbert space ℋ, an invariant subspace ℳ for T is stable provided that whenever is a sequence of operators such that , there is a sequence of subspaces , with in for all n, such that in the strong operator topology. If the projections converge in norm, ℳ is called a norm stable invariant subspace. This paper characterizes the stable invariant subspaces of the unilateral shift of finite multiplicity and normal operators. It also shows that...
Download Results (CSV)