Left-distributive embedding algebras.
Christensen has defined a generalization of the property of being of Haar measure zero to subsets of (abelian) Polish groups which need not be locally compact; a recent paper of Hunt, Sauer, and Yorke defines the same property for Borel subsets of linear spaces, and gives a number of examples and applications. The latter authors use the term “shyness” for this property, and “prevalence” for the complementary property. In the present paper, we construct a number of examples of non-shy Borel sets...
A number of recent papers have been devoted to the study of prevalence, a generalization of the property of being of full Haar measure to topological groups which need not have a Haar measure, and the dual concept of shyness. These concepts give a notion of "largeness" which often differs from the category analogue, comeagerness, and may be closer to the intuitive notion of "almost everywhere." In this paper, we consider the group of permutations of natural numbers. Here, in the sense of category,...
For measures on a Cantor space, the demand that the measure be "good" is a useful homogeneity condition. We examine the question of when a Bernoulli measure on the sequence space for an alphabet of size n is good. Complete answers are given for the n = 2 cases and the rational cases. Partial results are obtained for the general cases.
Page 1