On 2nd order intuitionistic propositional calculus with full comprehension.
The aim of this paper is to provide a methodology for turning a known crisp logic into a fuzzy system. We require of the methodology that it be meaningful in general terms, using processes which are independent of the notion of fuzziness, and that it yield a considerable number of known fuzzy systems.
We investigate the logical systems which result from introducing the modalities L and M into the family of substructural implication logics (including relevant, linear and intuitionistic implication). Our results lead to the formulation of a uniform labelled refutation system for these logics.
Page 1