The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On the Approximation by Convolution Operators in Homogeneous Banach Spaces of Periodic Functions

Draganov, Borislav R. — 2011

Mathematica Balkanica New Series

AMS Subject Classification 2010: 41A25, 41A27, 41A35, 41A36, 41A40, 42Al6, 42A85. The paper is concerned with establishing direct estimates for convolution operators on homogeneous Banach spaces of periodic functions by means of appropriately defined Kfunctional. The differential operator in the K-functional is defined by means of strong limit and described explicitly in terms of its Fourier coefficients. The description is simple and independent of the homogeneous Banach space. Saturation...

Page 1

Download Results (CSV)